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This work investigates the use of electronic tongues for monitoring nutrient solution compositions in
closed soilless systems. This is a horticultural technique in which the nutrient solution is continuously
recirculated and an automatic recomposition system maintains the concentration of the different ions
in the optimum range for the plants. Electronic tongues used in this study comprised an array of
potentiometric sensors and complex data processing by artificial neural networks. A first experiment
was able to carry out the simultaneous inline monitoring of ammonium, potassium, sodium, chloride,
and nitrate ions during the winter. In the second and third applications, done during summer, some
changes were introduced in the sensor array to improve its response toward chloride ions and to
incorporate phosphate in the model. This electronic tongue was validated with real greenhouse
samples and was also able to detect the variations in the ion concentrations caused by an incorrect
configuration of the recomposition system.
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INTRODUCTION

The constant evolution of our society is causing an increased
demand for information about the surrounding environment. In
this context, analytical chemistry plays a special role by
progressively supplying more and better analytical information
(1). Previously, this information was obtained by discrete
analysis using available laboratory methods, for example, ionic
and high-performance liquid chromatography, spectroscopy, and
photometry (2). Recently, analytical procedures capable of
obtaining in situ, continuous, and real-time information have
appeared to meet some monitoring needs. Because of the
complexity of the matrix involved, the measuring principles of
these systems must be sufficiently robust and sensitive and have
broad selectivity as well.

One area in which the monitoring of the concentrations of
analytes in solution is necessary is protected horticulture (3).
This work is focused on a particular horticultural technique
known as closed soilless culture (4–6). Basically, in this
technique, plants grow in substrates such as rockwool, perlite,
and peat, which replace natural soil. Nutrients or other necessary
elements are supplied through a feed solution. The solution that

is not used by the plants is captured in a drain tank. After
filtration and disinfection, it is mixed with clean water and
adjusted for pH and electrical conductivity (EC), which
determine the addition of nutrient ions. This solution can then
be reused. However, a practical problem with these closed
techniques appears, which is the alteration in ionic proportions
of the recirculated nutrient solution. Existing protocols to control
its concentration are based on closed-loop systems employing
EC and pH signals. This type of protocol allows for automati-
cally controlling the EC of the nutrient solution by means of
diluting the drainage solution with clean water. However, the
total conductivity provides no information on the concentration
of individual ions, such as nitrate, potassium, phosphate,
ammonium, calcium, magnesium, sulfate, sodium, and chloride.
In practice, control over these individual ions is achieved by
periodic (for example, weekly) laboratory analysis, followed
by readjustment of the dosage of fertilizers. Nevertheless, this
can only give approximate control because the uptake of ions
varies with the time of the day, stage of plant growth, or solution
temperature (5). Another disadvantage, which is particularly
acute if the clean water source contains appreciable amounts
of nonessential ions, such as sodium and chloride, is that these
ions may be supplied at a faster rate than they are taken up by
the plants and, consequently, they may accumulate in the nutrient
solution. Thus, they make an increasing contribution to the
overall EC, and the concentration of the fertilizer ions will
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diminish if the conductivity is maintained at a fixed value.
Undoubtedly, continuous and real-time measurement of the
nutrient solution composition would constitute a clear improve-
ment to the technique.

An alternative to the classical monitoring of such a large
number of elements is the application of electronic tongues (7).
This novel approach in analysis is based on an array of
nonspecific sensors combined with data processing of their
complex signals by use of advanced chemometrical tools.
Different electronic tongues have been developed to monitor
industrial processes (8) and for environmental control (9). In a
previous paper (10), we reported an electronic tongue formed
by ion-selective electrodes (ISEs) and an artificial neural network
(ANN) response model. This was applied to the simultaneous
determination of ammonium, potassium, and nitrate, as well as
to the undesired saline compounds sodium and chloride, in real
greenhouse samples. In addition, it was applied to an inline
application in a soilless culture as described above. The results
showed that the chloride ion could only be determined semi-
quantitatively due to the interference of the nitrate ion.
Furthermore, it seemed necessary to improve the method to
correct the distortions caused by the response drifts in the sensor
array.

In the present work, we study these two aspects by applying
two different electronic tongues to the monitoring of the nutrient
solution composition used in this type of fertigation system:
one for the simultaneous determination of ammonium, potas-
sium, nitrate, sodium, and chloride and the other for the
simultaneous determination of these five elements plus phos-
phate. The five-ion model was tested during the winter and the
six-ion model, during the summer. This was intended to study
the behavior of the proposed approach in different conditions
of the plants’ metabolism. We also studied the behavior of the
electronic tongue when the closed system is not capable of
controlling the concentration of the individual ions in the nutrient
solution. In all of the applications developed, special attention
was paid to compensating for any effect of temperature changes
on the predicted concentrations.

MATERIALS AND METHODS

Reagents, Materials, and Apparatus. The ion-selective polyvinyl
chloride (PVC) membranes were prepared from high molecular weight
PVC (Fluka, Buchs, Switzerland), using bis(1-butylpentyl)adipate
(BPA), dioctyl sebacate (DOS), 2-nitrophenyloctyl ether (NPOE),
dibutyl sebacate (DBS), dioctylphenyl phosphate (DOPP), and dibutyl
phtalate (all from Fluka) as plasticizers. The recognition elements
employed to formulate the potentiometric membranes were the iono-
phores nonactin (nonactin from Streptomyces, Fluka), valinomycin
(potassium ionophore I, Fluka), bis[(12-crown-4)methyl]-2-dodecyl-
2-methyl malonate (CMDMM, Dojindo, Kumamoto, Japan), tridode-
cylamine (TDDA, hydrogen ionophore I, Fluka), and tetronasin
[provided by the University of Cambridge (11)]. Material for the
charged carriers was hemi-calcium bis[4-(1,1,3,3-tetramethylbutyl)phe-
nyl] phosphate(II) (BBTP, Fluka), tridodecylmethylammonium chloride
(TDMAC, Fluka), and tetraoctylammonium nitrate (TOAN, Fluka). In
addition, two recognition elements with generic response were used:
dibenzo-18-crown-6 (Fluka) for cations and tetraoctylammonium
bromide (TOAB, Fluka) for anions. Potassium tetrakis(4-chlorophe-
nyl)borate (Fluka) was used when necessary for a correct potentiometric
response. All of the components of the membrane were dissolved in
tetrahydrofuran (THF, Fluka).

Silver foil (Ag, Aldrich, Milwaukee, WI) of 99.9% purity and 0.5
mm thick was used to prepare a Ag/AgCl based sensor for chloride.
Also, cobalt wire (Goodfellow, Huntingdon, U.K.) of 99.99% purity
and 0.5 mm diameter was used to prepare a sensor for phosphate.

The materials used to prepare the solid electrical contact were
Araldite M and Hardener HR epoxy resins (both from Vantico,
Barcelona, Spain), and graphite powder (50 µm, BDH Laboratory
Supplies, Poole, U.K.) for conducting filler.

All other reagents used for the preparation of the training and testing
solutions were of high purity, analytical grade, pro analysis or
equivalent.

Real water samples and “inline” applications were conducted in a
greenhouse located near Barcelona, in Maresme county (41° 25′ N and
2° 23′ E), on the central coast of Catalonia (Spain). Two types of water
samples were studied: nutrient solution and drainage solution.

Potentiometric measurements were performed with a measurement
system developed in the laboratory. Each channel has a conditioning
stage using an INA116 (Texas Instruments, Dallas, TX) instrumentation
amplifier for adapting the impedance of each sensor. Measurements
were differential versus the reference electrode (double junction Ag/
AgCl electrode, model 90-02-00, Thermo Electron, Waltham, MA) and
grounded with an extra connection in contact with the solution through
a stainless steel wire. All channels were noise-shielded with their signal
guard, and the outputs of each amplifier were filtered with a second-
order active low-pass filter with -3 dB, 2 Hz cutoff frequency, using
a UAF42 (Texas Instruments) universal filter. These filtered outputs
were connected to an MPC506 (Texas Instruments) 16-channel analog
multiplexer. Digitalization was performed by an ADS7804 (Texas
Instruments) A/D converter. The complete data acquisition system was
controlled using an AT90S8515 (Atmel, San Jose, CA) microcontroller,
which also supplied the RS-232-C serial communication. This micro-
controller was programmed making use of the ImageCraft Development
Tools’ interface employing language C. The program’s main tasks were
the multiplexer control that selects each channel, data acquisition with
the analog to digital converter, and transmission/reception of words as
well as data control. This instrument system has been recently described
for its use in different environmental applications (9). For the
construction of the chloride sensor, an Autolab PGSTAT (Eco Chemie,
Utrecht, The Netherlands) was used for the AgCl electrodeposition.

Sensor Arrays. The sensors used were all solid-state ISEs with a
solid contact made from a conductive epoxy composite. This is the
usual configuration in our laboratories (12). The PVC membranes were
formed by solvent casting the sensor cocktail dissolved in THF. The
formulation of the different membranes used is outlined in Table 1.

During the winter application, the sensor array used comprised eight
sensors: one ISE for ammonium, one for potassium, one for sodium,
one for nitrate, and two for chloride; in addition, two generic membrane
formulations were used (one for alkaline ions employing the electro-
active element dibenzo-18-crown-6 and another for anions employing
TOAB). The TDMAC-based chloride sensor was duplicated because
of the large interference effect shown by chloride ISE due to nitrate
ion. This effect is characteristic when PVC membrane carrier-based
sensors are used with samples having high levels of nitrate (19).

The sensor array used during the summer application was an
evolution of the previous one. First, the two chloride sensors based on
TDMAC were replaced by a Ag/AgCl electrode to improve the response
to chloride. This new chloride sensor was formed by AgCl electrodepo-

Table 1. Formulation of the Ion Selective Membranes Employed in the
Construction of the Potentiometric Sensor Arrays

sensor PVC (%) plasticizer (%) recognition element (%) ref

NH4
+ 33 BPA (66) nonactin (1) 13

K+ 30 DOS (66) valinomycin (3)a 14
Na+ 22 NPOE (70) CMDMM (6)a 15
H+c 32.8 DOS (65.6) TDDA (1)a 16
Ca2+ 1c 33 NPOE (66) tetronasin (1)a 17
Ca2+ 2c 30 DOPP (65) BBTP (5) 18
generic 1 29 DOS (67) dibenzo-18-crown-6 (4) 19
NO3

- 30 DBP (67) TOAN (3) 20
Cl–b 30 NPOE (65) TDMAC (5) 21
generic 2 29 DBP (65) TOAB (4) 22

a The formulation includes potassium tetrakis(4-chlorophenyl)borate as additive.
b Sensor used only during the first application: winter. c Sensor used only during
the second application: summer.
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sition on a disk of Ag, 5 mm in diameter. To obtain a homogeneous
deposition, a 0.1 mA current was passed through the electrolysis cell
containing 10-1 mol L-1 NaCl for 1 h. Second, four new sensors were
included to complete the array. A 1 cm length and 0.5 mm diameter
cobalt wire based phosphate sensor was constructed (23). A TDDA-
based ISE for pH was included because the response of the phosphate
sensor is strongly dependent on the pH. Finally, two different electrodes
for calcium ion, one of each type, were added to correct the effect of
this cation on the rest of the sensors. Thus, the array comprised 11
electrodes altogether.

Training and Measurement Procedure. To verify the correct
functioning of the prepared sensors and how they were affected by the
inline experience, they were calibrated to their corresponding primary
ion in 25 mL of doubly distilled water by sequential additions of
standard solutions before and after the winter application. The generic
response sensors were calibrated with potassium and nitrate, respec-
tively. Also, before and after the summer application, the newly
incorporated sensors were calibrated: the Ag/AgCl sensor in response
to chloride and the cobalt sensor to phosphate.

Before any application, the response of the system had to be assessed
employing an ANN model. Measurements for training were done with
solutions with a defined background. To compensate for the matrix
effect, the background has to be as similar as possible to the real sample.
In this way, because of the complexity of the real conditions, we decided
to use a 1/2 (v/v) mixture of nutrient solution from the greenhouse/
doubly distilled water instead of generating it completely in the
laboratory.

Using this background, different mixtures were prepared by additions
of stock solutions of the different considered ions according to a
statistical experimental design. For the first application (winter), 27
solutions were defined from a fractional factorial design with three levels
of concentration and five factors (the five considered ions, 35-2). For
the second application (summer), 27 solutions were also defined from
a fractional factorial design with three levels of concentration and six
factors (the six considered ions, 36-3). The ranges of variation of the
concentration for the analytes in these solutions, which correspond to
expected variations, are summarized in Table 2.

To correct for possible drifts, the inputs in the neural network were
relative measurements of each sensor with respect to a periodically
checked reference solution. In fact, this reference solution was checked
every 10 samples during the training procedure and once every day
during the inline experiments. The composition of this reference solution
was 10-4 mol L-1 for ammonium and phosphate and 10-3 mol L-1

for the rest of the considered ions (potassium, sodium, chloride, and
nitrate). These are the minimum concentrations present in the nutrient
solution to compensate for any hysteresis effect of the electrodes. We
also included as input the solution temperature to compensate for any
influence on the response of these potentiometric sensors. Therefore, a
laboratory-made temperature probe based on an LM35 integrated circuit
(National Semiconductor, Santa Clara, CA) was employed together with
the array of electrodes.

For the proper verification of the electronic tongue performance, a
new set of solutions was used, the test set, which did not participate in
the training process. The test set was formed by 10 synthetic solutions
prepared in the same way as the training ones, but with concentrations
generated randomly inside the training space.

These 37 prepared solutions, 27 for training and 10 for testing, were
measured in three turns: one with all of the solutions at room
temperature (around 24 °C); another with half of the solutions at lower

temperature (around 10 °C); and the third with the other half at higher
temperature (around 35 °C). This experimental sequence was designed
with the goal of including temperature effect in the response model.
Thus, the ANN model was built using 54 (27 solutions × 2) points for
training and 20 (10 solutions × 2) points for testing.

Software. The ANNs tested were trained and evaluated using the
routines available to the Neural Network Toolbox v. 4.0, which are
optional add-ons in the Matlab v. 6.1 (Mathworks, Natick, MA)
environment. Sensor readings were acquired in the PC by using custom
software written in VisualBasic (Microsoft, Seattle, WA).

Application with Real Samples. A set of real samples (nutrient
solution and drainage water) was collected from a rose recirculating
soilless culture described below and measured by the electronic tongue
used in the summer application. To obtain a greater variability of the
concentration of the analytes, samples were diluted with different
amounts of clean water and presented to the system as well. Given
that there were not enough data to make a direct comparison between
real and predicted concentrations in the inline experiments, this study
would serve to validate the proposed electronic tongue in the inline
conditions. Therefore, measurements were done in a pipe installed in
the greenhouse to imitate the conditions of the monitoring application.
Results were compared with those determined by reference methods
of widespread use: ammonium was determined by the Nessler reaction;
potassium and sodium were quantified by atomic absorption spectros-
copy; and chloride, nitrate, and phosphate, were determined by ion-
exchange chromatography.

Inline Application in a Soilless Culture. The inline measurements
were taken in a soilless rose crop (Rosa indica L. cv. Lovelly Red), in
a 270 m2 air-conditioned greenhouse at the IRTA site in Cabrils (41°
25′ N, 2° 23′ E). They were done in two turns: between November
and December of 2005 and in July of 2006. The growing medium was
expanded medium-grade perlite for half of the greenhouse and coconut
fiber for the other half. Irrigation was triggered automatically every
time the accumulated radiation reached 200 W m-2 h, leaving a leaching
fraction of around 20% of the applied water. The leachates of both
types of substrate were collected together and reused for the production
of a new nutrient solution. The recomposition of nutrient solution
consisted of the dosification of the volumes of leachate, clean water,
and six concentrated solutions (potassium nitrate and ammonium nitrate;
potassium sulfate; monopotassium phosphate; magnesium nitrate;
microelements and nitric acid). This dosification was controlled by a
programmable logic controller (PLC) MCU “Ferti” (Multi Computer
Unit; FEMCO, Damazan, France) based on pH (measured by a pH
sensor from Broadley James, Irvine, CA), EC, and predefined ratios
between the volumes of each concentrated solution. The ratios of
injection of the diverse concentrated solution were modified, if
necessary, according to laboratory analysis of the leachate performed
every 2 weeks (5).

In a similar manner to the monitoring experiment when the system
was working correctly, we did a third application during the summer.
On some days we changed the ratios of the stock solutions (used by
the controller to recompose the nutrient solution) to investigate the
response of the electronic tongue when the system is not able to
maintain the concentrations at a constant value.

The array of sensors and the temperature probe were installed in
the pipe between the tank of recomposed nutrient solution and the
irrigation pump. One measurement per sensor was done every minute.
The location of the ISE array and the temperature probe inside the
system is shown in Figure 1.

RESULTS AND DISCUSSION

Sensor Performance. The prepared sensors were evaluated
in doubly distilled water to establish if they were suitable for
constituting the different arrays. The sensitivities to the primary
ion before and after the inline application are summarized in
Table 3. The results obtained were close to the corresponding
theoretical value for monovalent ions (59.1 mV/dec) in the
calibrations before the inline monitoring. The sensors with
generic response showed the lowest sensitivity due to their

Table 2. Ranges of Variation of the Concentration of the Analytes in the
Solutions Used for the Training Process

species first application (mol L-1) second application (mol L-1)

ammonium 7.7 × 10-4–6.2 × 10-3 3.0 × 10-5–1.5 × 10-2

potassium 4.2 × 10-3–2.0 × 10-2 3.0 × 10-4–1.5 × 10-2

sodium 2.0 × 10-3–1.2 × 10-2 5.3 × 10-4–1.5 × 10-2

chloride 2.0 × 10-3–1.2 × 10-2 5.3 × 10-4–1.5 × 10-2

nitrate 5.3 × 10-3–2.1 × 10-2 1.5 × 10-3–1.5 × 10-2

phosphate – 9.0 × 10-5–1.5 × 10-2
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nonselective nature. The calibrations after the inline experiment
showed that the TDMAC chloride based sensor was most
affected, having lost practically all response toward chloride.
For this reason, in the summer application these TDMAC
sensors were replaced by a Ag/AgCl sensor, the responses of
which do not present nitrate interference. Also, the potassium
sensor and the sensor based on dibenzo-18-crown-6 lost part
of their initial response. This may be caused by the interference
of alkaline-earth ions, such as calcium, present in the nutrient
solution. In the summer application, we tried to correct this effect
by adding two different sensors for calcium.

Building the ANN Models. ANNs are multicomponent
calibration tools for classification and modeling, which are
especially useful for nonlinear systems. Their functioning is
inspired by the animal nervous system, and their elementary
unit is the perceptron or neuron. The properties that characterize
a neural network are the transference function used in the
neurons, the network topology, and the learning algorithm used.
Among the different ANN structures, the multilayer perceptron
is the most used. It can be defined as a feed-forward network
with one or more layers of neurons between the input and output
neurons. These additional layers contain hidden neurons that
are connected to either the inputs or outputs by weighted
connections.

Because of the difficulty of predicting an optimum config-
uration in advance, selecting the topology of an ANN is the
first obstacle in the proposed approach. The ANN structure for
the best modeling of a sensor array is obtained by a trial and
error procedure. This process includes a combination of the

number of neurons of the hidden layer and the transference
function used within. These characteristics will define the
specific combination leading to the best modeling ability (24)
because, according to our previous experience, the remaining
characteristics are fixed.

The fixed parameters that were common for the two optimized
ANN models were a linear transfer function of the output layer
(purelin) and a single hidden layer of neurons. These selections
were based on previous experience with electronic tongues using
potentiometric sensors (25). The learning strategy used was
Bayesian regularization and employed a learning rate of 0.1 and
a momentum of 0.4 selected from preliminary tests for its
internal parameters. The modeling capacity of the ANN was
examined in terms of the root mean squared error (RMSE).

When compared with others, the strategy selected for the
learning process (Bayesian regularization) provided better
RMSE value, greater consistency between the predicted and
obtained values for the training, and a higher significance for
the external test set. In addition, an internal validation subset
of samples was not necessary because it avoids overfitting
by other means (26). This strategy searches for the simplest
model that best fits the experimental function while predicting
points that have not participated in the training process.
Considering the nonlinear behavior of the sensors, two
different nonlinear transfer functions were considered for the
hidden layer, a sigma-shaped function called the tansig function
(27) and a logistic function represented by the logsig function.

For the first application, the ANN model had nine input
neurons (eight sensors from the array plus the temperature) and
five output neurons (the five modeled ions). After the systematic
evaluation of configurations, the best training results were
obtained with the logsig function and seven neurons in the
hidden layer. These conditions provided a RMSE value of 6.46
× 10-3 mol L-1 for the external test set. For the second
application, the ANN model had 12 input neurons (11 sensors
from the array plus the temperature) and 6 output neurons (the
6 modeled ions). The best training results were obtained with
the logsig function and seven neurons in the hidden layer, which
provided a RMSE of 8.01 × 10-3 mol L-1 for the test set.
Graphs comparing obtained versus expected concentrations for
the test set (those solutions that did not intervene in the training
process) were produced to check the behavior of the optimized
models. Table 4 shows the parameters of the linear regression
of obtained versus expected concentration values for the test
set solutions in the two different applications. The accuracy of
the models approached ideality, with unity slopes and zero
intercepts (all confidence intervals were calculated at the 95%
confidence level). Although the confidence interval for chloride
includes the unity slope and zero intercept in the first application,
the regression coefficient is not significant. This unsatisfactory
behavior was corrected in the second application, where chloride
sensors based on charged ion carriers were substituted for one
sensor based on Ag/AgCl. Furthermore, good correlation
parameters were obtained for phosphate using the cobalt-based
sensor coupled with the pH sensor. For the rest of the analytes
(ammonium, potassium, sodium, and nitrate), the results obtained
were comparable and satisfactory in the two applications.

Application with Real Samples. Once the applicability of
this system was demonstrated, the proposed method was applied
to real samples of an existing fertigation experiment. Two groups
of samples were studied: nutrient solution and drainage or
leachate solution. In addition, these were diluted with clean
water by ratios of 1:1, 2:1, and 3:1 and processed in the same
way to enlarge the number of available real samples and their

Figure 1. Block diagram of the whole system, in-line insertion of the
electronic tongue inside the closed soilless strategy. During the winter
application, the concentrations of ammonium, potassium, sodium, chloride,
and nitrate ions were monitored. During the summer application, we
included a sixth ion, phosphate, in the model.

Table 3. Sensitivities to the Primary Ion Obtained for Each Sensor before
and after Inline Application

sensor based on
before inline

application (mV/dec)
after inline

application (mV/dec)

NH4
+a nonactin 56.2 56.4

K+a valinomycin 55.4 36.5
Na+a CMDMM 59.8 60.2
NO3

-a TOAN -53.7 -53.8
Cl-a TDMAC -53.7 -6.4
generic 1a,c dibenzo-18-crown-6 50.5 43.2
generic 2a,d TOAB -48.2 -53.6
Cl-b Ag/AgCl -58.9 -67.9
PO4

3-b cobalt -53.2 -53.7

a Values obtained before and after the winter application. b Values obtained
before and after the summer application. c Response to potassium. d Response to
nitrate.
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variability. These samples were treated separately, and the
relative errors of the logarithm of the concentration for each
sample were calculated as usual. The results are summarized
in Table 5. The mean absolute relative error for each considered
ion is calculated as the mean of the absolute values of errors
presented for that ion. This table shows that the relative errors
are in specific cases close to 50%, although much lower on
average. For example, we obtained a mean relative error of
11.3% for chloride and very close to 15% for potassium, sodium,
and nitrate. For ammonium, the average was 23.8%. Worse
results were obtained in the determination of phosphate with a
mean error of 31.9%, which was probably due to an uncom-
pensated matrix effect (23). The lower concentrations of
phosphate normally used in the nutrient solution also made a
good performance difficult for this ion. In any case, this fact
proves that the cobalt wire electrode, although conceptually
simple, is not a good sensor for the direct measurement of
phosphate.

Table 6 summarizes the comparison of the results obtained
using the electronic tongue with those obtained using the
Nernstian calibration curve of each specific sensor. This table

shows that the relative errors have increased for the six ions
due to the interferences and the effect of temperature, especially
for potassium and sodium.

First Inline Application in the Greenhouse: Winter. With
the previously optimized ANN, the primary data were turned into
analytical information. The concentrations of ammonium, potas-
sium, sodium, chloride, and nitrate in the nutrient solution were
continuously monitored for more than 20 days during November
and December 2005. Three and a half of these days were analyzed
in more detail. Figure 2 shows the concentrations of the considered
cations and anions that were predicted by the electronic tongue
during these days. In addition, the figure represents the recorded
nutrient solution temperature with the three day-night cycles. The
recirculation system was able to maintain the concentration of
ammonium, sodium, and nitrate in particular, within a narrow range.
Because no daily cyclic variation of concentrations was observed
for these three ions, we interpret that the electronic tongue corrected
the temperature effect. Although there are times in which the
concentrations are out of the training space (Table 2), the optimized
ANN model has the capacity of extrapolating new concentrations.
The ammonium concentration was between 0.002 and 0.008 mol
L-1, the sodium concentration between 0.002 and 0.004 mol L-1,

Table 4. Linear Regressions of the Comparison Graphs Obtained for the Test Set Solutions in the Two Different Applications Using the Optimized ANN
Models

species first application second application

NH4
+ y ) (1.11 ( 0.40)x + (0 ( 1 × 10-3), r ) 0.806 y ) (1.10 ( 0.40)x + (0 ( 3 × 10-3), r ) 0.835

K+ y ) (1.08 ( 0.47)x + (3 × 10-3 ( 4 × 10-3), r ) 0.751 y ) (0.97 ( 0.45)x + (1 × 10-3 ( 3 × 10-3), r ) 0.767
Na+ y ) (0.98 ( 0.36)x + (0 ( 2 × 10-3), r ) 0.802 y ) (1.06 ( 0.28)x – (0 ( 3 × 10-3), r ) 0.903
Cl- y ) (0.53 ( 0.48)x + (3 × 10-3 ( 3 × 10-3), r ) 0.480 y ) (1.00 ( 0.22)x + (2 × 10-3 ( 2 × 10-3), r ) 0.926
NO3

- y ) (1.11 ( 0.12)x – (0 ( 1 × 10-3), r ) 0.980 y ) (0.93 ( 0.24)x + (1 × 10-3 ( 2 × 10-3), r ) 0.904
PO4

3- – y ) (1.19 ( 0.33)x – (1 × 10-3 ( 3 × 10-3), r ) 0.905

Table 5. Relative Errors Obtained for the Logarithm of the Concentration,
Using the Electronic Tongue, in the Determination of the Six Ions in Real
Greenhouse Samples during the Summer Application

samplea rel error,
NH4

+ (%)
rel error,
K+ (%)

rel error,
Na+ (%)

rel error,
Cl- (%)

rel error,
NO3

- (%)
rel error,

PO4
- (%)

NS 1 -10.5 10.9 -2.9 -4.0 13.4 59.1
DS 1 -26.6 -2.0 3.8 -4.1 9.9 35.0
NS 2 -15.9 11.4 1.6 12.3 12.1 30.8
NS:CW 1:1 -14.6 11.1 -1.6 -3.5 13.5 20.4
NS:CW 2:1 -13.4 8.5 -8.3 6.9 14.2 25.5
NS 3 26.0 19.0 13.0 12.3 18.1 40.3
NS:CW 3:1 21.4 17.4 12.7 12.0 21.5 29.1
NS:CW 1:1 14.7 17.6 12.5 11.7 25.8 20.9
NS:CW 2:1 13.2 14.7 12.7 11.9 22.1 25.3
NS:CW 3:1 12.5 12.6 12.7 12.0 20.4 28.2
NS:CW 2:1 11.1 12.4 12.7 11.9 22.1 26.5
NS 4 17.6 7.1 13.0 12.3 15.9 49.7
DS 2 -9.1 -1.7 24.4 28.5 11.5 28.4
NS 5 -16.2 -3.0 -3.2 -6.1 14.0 41.7
NS 6 -8.5 23.9 16.0 14.4 20.8 31.5
NS 7 31.5 28.3 16.7 15.4 11.6 41.8
NS:CW 1:1 22.0 30.9 13.2 11.9 22.9 22.6
NS:CW 2:1 29.3 32.1 14.4 13.2 20.9 25.8
NS:CW 3:1 55.3 33.5 15.0 13.7 19.3 25.9
NS 8 49.5 17.6 16.7 15.4 7.3 34.9
DS 3 23.2 12.0 27.2 -3.2 16.4 26.4
DS 4 13.1 7.0 41.3 0.6 13.1 25.9
NS 9 46.8 17.2 -14.5 15.4 -2.9 45.1
NS:CW 3:1 49.1 5.3 -16.0 -7.7 6.6 35.9
NS:CW 2:1 36.4 -13.5 -18.0 -15.2 10.2 29.7
NS:CW 1:1 31.8 -35.4 -19.7 -17.0 11.0 23.6

mean absolute
rel error (%)

23.8 15.6 14.0 11.3 15.3 31.9

a NS, nutrient solution; DS, drainage solution; CW, clean water.

Table 6. Relative Errors Obtained for the Logarithm of the Concentration
by Direct Interpolation in the Nernstian Model for the Determination of the
Six Ions in Real Greenhouse Samples during the Summer Application

samplea rel error,
NH4

+ (%)
rel error,
K+ (%)

rel error,
Na+ (%)

rel error,
Cl- (%)

rel error,
NO3

- (%)
rel error,

PO4
- (%)

NS 1 11.6 29.1 13.9 21.1 22.4 -46.8
DS 1 31.6 36.8 16.2 34.3 30.4 -43.2
NS 2 12.5 28.3 11.2 29.1 34.1 -46.2
NS:CW 1:1 20.0 38.1 12.2 29.4 29.8 -52.5
NS:CW 2:1 15.5 40.2 13.4 27.5 29.3 -51.4
NS 3 15.9 35.0 70.7 26.9 -26.5 -55.0
NS:CW 3:1 19.5 44.2 70.3 26.9 -21.3 -56.5
NS:CW 1:1 24.2 41.5 70.2 31.9 -11.6 -57.9
NS:CW 2:1 20.1 42.1 70.8 32.0 -9.4 -57.0
NS:CW 3:1 18.2 41.2 71.3 31.4 -8.0 -56.5
NS:CW 2:1 19.6 41.2 71.7 31.2 -6.0 -84.3
NS 4 15.5 43.8 72.1 21.9 -14.0 -55.1
DS 2 37.2 34.6 95.2 39.8 -3.0 -54.0
NS 5 34.4 79.1 74.4 17.7 44.0 -50.3
NS 6 40.0 91.4 22.1 18.2 73.5 17.5
NS 7 33.2 73.8 79.7 -54.1 13.1 17.1
NS:CW 1:1 34.2 54.9 81.3 -42.9 6.9 10.6
NS:CW 2:1 37.0 62.2 108.1 -34.3 18.8 13.0
NS:CW 3:1 40.0 65.5 65.7 -22.1 34.0 14.1
NS 8 33.5 74.2 58.8 -17.2 48.6 -39.5
DS 3 42.3 85.2 61.7 -13.8 41.4 -44.3
DS 4 43.5 92.3 61.6 -12.6 50.1 -43.1
NS 9 38.0 74.0 61.5 -21.4 37.3 -33.7
NS:CW 3:1 37.3 65.4 64.7 -22.4 28.1 -39.8
NS:CW 2:1 38.4 62.2 62.7 -21.7 28.9 -38.0
NS:CW 1:1 40.6 54.9 60.0 -20.7 27.2 -34.1

mean absolute
rel error (%)

29.0 55.0 58.5 27.0 26.8 42.8

a NS, nutrient solution; DS, drainage solution; CW, clean water.
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and the nitrate concentration around 0.02 mol L-1. However, the
chloride concentration showed a continuous increase up to 0.02
mol L-1 that can be caused by the degradation of the electrodes
for chloride due to the presence of high concentrations of nitrate.
On the other hand, the potassium concentration suffered a continu-
ous decrease to 0.01 mol L-1 at the end of the third day. It is
difficult for us to physiologically interpret this decrease in potassium
concentration given that the values predicted by the electronic
tongue do not directly represent the uptake of the plants, but the
imbalance between the ion concentrations added to the nutrient
solution and the plant absorption rates of each of them. However,
the study could have coincided with the formation of the floral
buds, which is the period of maximum absorption of nutrients by
the rose tree, especially of potassium (28). In addition to this, a
function of the potassium uptake is to protect the plant against low
winter temperatures (29).

Second Inline Application in the Greenhouse: Summer.
As before, the concentrations of ammonium, potassium, sodium,
chloride, nitrate, and phosphate were continuously monitored
for 13 days during July 2006. Three of these days were studied
in more detail. Figure 3 shows the concentrations of the cations
and anions predicted by the electronic tongue during these days,
as well as the temperature of the nutrient solution. In this case,
the recirculation system was able to correct the variations of
the concentration of ammonium, sodium, chloride, nitrate, and
phosphate ions while correcting for the temperature effect as
well. In this summer application, the ammonium concentration
was around 0.01 mol L-1, the sodium concentration between
0.015 and 0.02 mol L-1, the chloride concentration around 0.01
mol L-1, the nitrate concentration between 0.005 and 0.01 mol
L-1, and the phosphate concentration between 0.001 and 0.01
mol L-1. In this case, the potassium concentration was not in
a narrow range and suffered a continuous increase to 0.03 mol
L-1. This observation is the opposite of the wintertime behavior.
During summertime, the autotrophic phase and the constitution
of new organic molecules predominate. In summer, the forma-
tion of all the photosynthetic system (heterotrophic phase) is
brief and happens at the beginning of summer to make better
use of the daylight. This is also when potassium consumption
is preferred. It is likely that the observed behavior corresponds
to a moment when the heterotrophic phase had finished and
the dosification system had not been readjusted.

Other differences noted in comparison with the winter applica-
tion were an increase in the concentrations of the nonessential
sodium and chloride ions. This could be caused by the fact
that evapotranspiration is higher during the summertime (5).
Consequently, the accumulation in the nutrient solution of
these ions provided by the drainage solution is also higher.
Similarly, a decrease in nitrate concentration is observed.
This may be explained by the higher amount of nitrogen that
the plants use when diurnal photosynthesis increases (30).
Another cause of this decrease can be the fact of maintaining
the EC at a fixed value when sodium and chloride are present
at high concentration. As we explained in the introductory
section, if occurring, it may cause a lesser dosage of fertilizer
ions. Similarly to nitrogen, there is a close relationship
between plant phosphorus uptake and carbon metabolism.
Besides, the concentration of phosphate in the formulation
of the nutrient solution is always minority. This fact can
explain why phosphate had the lowest concentration of the
six considered ions.

Third Inline Application in the Greenhouse: Incorrect
Recomposition of the Nutrient Solution. An incorrect con-
figuration for the system that controls the recomposition of
the nutrient solution was established for 5 days to check the
ability of the analytical system to detect the anomalies.
Figures 4 and 5 show the concentrations of the cations and
anions predicted by the electronic tongue during these 5 days,
with the corresponding temperature. The output of the
electronic tongue clearly shows a wave of inappropriate
composition of the nutrient solution between the second and
fourth days of continuous monitoring. More precisely, the
anomaly consisted basically of an important decrease of
potassium concurrent with an increase in the concentration
of the undesired solutes, sodium and chloride. In fact, the
autocorrelation matrix constructed with the values of con-
centration predicted by the electronic tongue for this third
application showed that the most significant correlation was
between the sodium and chloride ions, with a coefficient value
of 0.961. This pattern could be explained as an excessive
proportion of exhausted recirculated solution in the refor-
mulated nutrient solution. It is remarkable that this type of
anomaly would be “invisible” to the inline measurements
used by the dosification equipment, typically based on pH
and EC. Furthermore, depending on how frequently the

Figure 2. Representation of the concentration values predicted by the
electronic tongue during the first application, in wintertime, for the
considered ions, ammonium, potassium, sodium, chloride, and nitrate, in
the nutrient solution during 3.5 days of continuous monitoring.

Figure 3. Representation of the concentration values predicted by the
electronic tongue during the second application, in summertime, for the
considered ions, ammonium, potassium, sodium, chloride, nitrate, and
phosphate, in the nutrient solution during 3 days of continuous monitoring.
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laboratory analysis is performed, its detection could be
delayed for up to several weeks.

In conclusion, two electronic tongues were tested in
different seasons: winter and summer. They permitted
differences to be observed in the calculated concentrations
of the ions considered, and we tried to explain these variations
using physiological arguments. We also confirmed that the
sensor based on Ag/AgCl is a good alternative to the carrier-
based sensors for chloride in such a complex matrix.
Unfortunately, the cobalt-based sensor for phosphate did not
present good results, and we could determine it only
semiquantitatively. Finally, in the third inline application,
the used electronic tongue was able to detect in real time
the anomaly introduced deliberately in the automatic recom-
position system, demonstrating clearly its utility in control
of closed soilless systems.

ABBREVIATIONS USED

EC, electrical conductivity; ISE, ion-selective electrode; ANN,
artificial neural network; PVC, polyvinyl chloride; BPA, bis(1-
butylpentyl)adipate; DOS, dioctyl sebacate; NPOE, 2-nitrophe-
nyloctyl ether; DBS, dibutyl sebacate; DOPP, dioctylphenyl
phosphate; CMDMM, bis[(12-crown-4)methyl]-2-dodecyl-2-

methylmalonate; TDDA, tridodecylamine; BBTP, bis(bis(4-1,-
1,3,3-tetramethylbutyl)phenyl)phosphatocalcium(II); TDMAC,
tridodecylmethylammonium chloride; TOAN, tetraoctylammo-
nium nitrate; TOAB, tetraoctylammonium bromide; THF,
tetrahydrofuran; RMSE, root mean squared error.
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